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ABSTRACT 

A global optimization approach is proposed for finding the global minimum energy 
configuration of a peptide. First, the original nonsmooth total potential energy 
function of a peptide, composed using the AMBER model, is transformed to a 
smoother function (shifted-impulsive transformation) via a procedure performed for 
each pair potential that constitute the total potential energy function. Then, the 

Potential Smoothing and Search (PSS) procedure is used to provide the global 
minimum. Based on this procedure global optimum solution is generated for a 
synthesis peptide named Compstatin. 

 

 

INTRODUCTION 

Global optimization of molecular structure is one of the classic 

problems of theoretical chemistry and biophysics. The problem can be stated 

simply: for a given molecule, what is the conformation with the lowest 

potential energy? Although simple to state, this problem is quite difficult to 
solve in a general way. Conformational space grows exponentially with 

molecular size, making systematic searching difficult for all but the smallest 

problems. Moreover, the number of local minima usually grows rapidly as 
well, with the result that straight-forward optimization methods tend to get 

trapped in local minima and fail to find the global minimum. A variety of 

approaches exist to deal with this difficulty. One of the most common is 
simulated annealing, which uses either Monte Carlo or molecular dynamics 

to sample conformational space at high temperatures, where large energy 

barriers are easily crossed [1]. By gradually lowering the temperature, the 

conformational sampling can be focused on lower energy regions of phase 
space.  

 

In principle, as the temperature approaches 0K, only the global 
minimum energy structure remains. In practice, simulated annealing is not 

deterministic, because of the prohibitive computational cost of a sufficiently 

long trajectory. Rather, even long trajectories have a finite chance of finding 
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several different minima, depending on the topology and roughness of the 

potential energy surface. Thus, simulated annealing can be viewed as a 
rescaling of the energy surface; high temperatures effectively scale the 

energies and make the surface flatter and thus easier to search, at the cost of 

diminishing the favorability of the low energy states. However, the 
molecular dynamics and Monte Carlo methods used with simulated 

annealing generate a Boltzmann distribution at each temperature, rather than 

proceeding directly toward a minimum. Combined with the exponential 

dependence of the barrier-crossing time on barrier height and the 
exponential growth in the number of barriers with system size, this makes 

simulated annealing inefficient for global optimization. 

 
 Potential smoothing methods take an alternative approach to the 

problem. If global optimization is difficult because the potential surface has 

many local minima and large barriers, why not simply alter the potential 

energy surface to eliminate them? Smoothing methods transform the 
potential surface in such a way that the number of minima is greatly reduced 

and global optimization is easy. The degree of surface deformation is then 

gradually decreased, such that the global minimum on the deformed surface 
can be tracked back to the original undeformed surface. There are several 

distinct methods which proceed along these lines, including the diffusion 

equation method [2; 5], Gaussian density annealing [3; 7], and Gaussian 
packet annealing [6]. In all of these methods, discrete atoms are replaced by 

Gaussian distributions. The interactions between the distributions result in a 

smoother potential surface with fewer minima. 

 

Potential Energy Model 

Molecular structure calculation is based on repeated calculation of a 
potential function, called force field, which depends on coordinates of the 

atoms of the molecule. A typical force field can be expressed by the 

following equation: 
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Here r  is the length of a bond, θ  is the angle of a pair of consecutive 

bonds, φ  is the value of a torsion, and ijr  is the distance between the i-th 

and the j-th nonbonded atoms. A torsion is defined for every set of four 

atoms { }4321 ,,, aaaa  such that ka  is bonded to 1+ka  for 3,2,1=k . The 

value of the torsion is equal to the angle between the two planes defined by 

coordinates of { }321 ,, aaa  and { }432 ,, aaa : 

 

 
 

The symbols 0r  (equilibrium length of a bond), 0θ  (equilibrium value of a 

bond angle), ijnk ATKS ,,, θ  and ijC  in (1) are constants, which are specific 

to the types (orbital configurations) of atoms taking part in each particular 

interaction (types of atoms do not change during computation). q  is the 

value of electrostatic charge on an atom, which also does not change during 

the computation. D  represents electrostatic properties of the environment 

(solvent). Most frequently, 1=D , when solvent is explicitly included, or 

ijcrD = , where 1≥c , when solvent is not present. 

 

Impulsive Smoothing 

Many smoothing methods operate by replacing the potential (force field) 

function with an appropriately weighted average value. Mathematically, the 

smoothed function is defined via an integral of the potential function, 

multiplied by a suitable weighting function or kernel, ( )xk : 
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In this notation, x  is a ( ) −− 63N dimensional vector (for an N  atom 

system) representing all degrees of freedom for the system, the integral is 

over all phase space, and 
λ

f  is the average of f , subject to weighting by 

k . 

  

The most common choice of smoothing kernel is a Gaussian if width λ  

centered at y . 
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The degree of smoothing is controlled by varying λ ; larger values of λ  

result in more averaging, produce a smoother  
λ

f , while ff =
→ λλ 0

lim . 

An alternative choice is an impulsive function. Specifically, 
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which select out a (hyper)sphere of radius λ  surrounding y . As above, 

each pairwise potential term will depend on three variables, allowing us to 
neglect the other dimensions in the integral. Substituting the kernel back into 

(2) and assuming y≤λ  gives 
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Performing the integrals over θ  and φ  yields 
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If y>λ , the region of integration contains the origin, and the boundaries 

on the integral are different: 
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As with Gaussian smoothing, f   must diverge no faster than 
1−

r  at the 

origin. 

 

Shifted-Impulsive Smoothing 

To overcome the disadvantage of Gaussian smoothing as well as impulsive 
smoothing, we introduce the shifted-impulsive smoothing. The shifted-

impulsive (simp) smoothing method is derived in much the same way as the 

impulsive smoothing, but rather than selecting a sphere centered at y  as in 

(4), we center it at zy λ+ . Instead of (5), we obtain for all λ   
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Unlike Gaussian and impulsive smoothing, simp remains well-defined even 

for functions which diverge rapidly as 0→r . This is because the integral 

contains no contribution from the potential function for yr < . 

 
Simp smoothing is not strictly an average of the total potential, and cannot 

be derived from (2). While each individual energy term is averaged 
according to a impulsive kernel, the locus of integration varies for different 

atom pairs. 

 

Applications to Force Field Terms 

Simp smoothing is directly applied to the terms of standard force fields 

simply by choosing f  accordingly and solving the integral in (8).  
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For example, the simp smoothed Coulomb function 
r

1
 is calculated as 
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TABLE 1: The simp smoothed force field terms. 

 
Forcefield 
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is the angular smoothing parameter in radian. 

 

 

 

Potential Smoothing and Search Procedure (PSS) 

The potential smoothing and search (PSS) protocol used here is essentially 

that of Pappu et al. [4], except the simp smoothing is used. So, we will 
merely give the algorithm here: 
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PSS-SIMP ALGORITHM 

 
Phase 0:  Input biopolymer sequences 

 

Phase I: Generation of Initial Configuration 
a) Local minimization on an extended conformer using the 

smoothed potential function. 

b) Local minimization on the output of step I-a, using the 
original energy function. 

 

Phase II.  Improvement of Local Minimizars 
a) Select a subset of the best sample points from step I-b to 

be start points for local minimizations. 

b) Perform a local minimization using the transformed 

functions, from each starting point selected in step II-a 
by using the backward smoothing scheme. 

c) Collect some number of the best of these minimizers for 

improvement in step II-d. 
d) Apply a global optimization algorithm (annealing 

simulated algorithm) to the original energy of the 

selected configuration using the selected small subset of 

minimizers in step II-c as starting point.  

 
Post-processing phase: Merge the new lowest configuration into the 
existing list of local minimizers, then choose the lowest among them as the 

final configuration. 

 

Computational Results  −−−− Compstatin Peptide 

Compstatin is a synthetic 14-residue ICVVQDWGHHRCTX cyclic peptide. 

The solution structure was previously identified using two-dimensional 

NMR techniques (accession number 1A1P at the RCSB Protein Data Bank 

(PDB), http://www.rcsb.org/pdb/) as well as the average Compstatin 
conformation. Here, we attempt to find the minimum energy structure of the 

Compstatin. A full global minimization of the Compstatin structure is 

performed using 2 procedures −−−− annealing simulated cooling (ASC) protocol 
and PSS-SIMP algorithm outlined in the Section 6. 
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Figure 1: Direct transformation of PDB to AMBER[8] structure with energy 

147.6129 kcal/mol) 

 

 

 
 

Figure 2: Minimum energy structure (-320.9031 kcal/mol) subjected to ASC 
protocol. 
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Figure 3:Minimum energy structure (-362.2145 kcal/mol) subjected to PSS-SIMP. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4: Backbone structure of Compstatin-ASC (left) VS Compstatin-PSS-SIMP 

(right) 

 
 

The PSS-SIMP minimum energy structure satisfying distance constraint and 
dihedral angle bounds provided an AMBER99 energy of -362.2145 

kcal/mol, which is lower in energy than the minimum structure of annealing 

simulated cooling protocol (-320.9031 kcal/mol). 
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CONCLUSIONS 

The solution technique described in this paper represents another 

enhancement over existing methods. The PSS-SIMP algorithm, based on the 

simp smoothing approach, has already been successfully applied to the 

identification of global minimum energy structures of peptides modeled by 
full-atom force fields. The application of this technique to the Compstatin 

structure prediction problem emphasizes the merits of the approach. The 

globally predicted structure using PSS-SIMP exhibits an improvement 
energy, which indicates better definition of structural details, in contrast, 

results obtained from ASC protocol. 
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